考试采用闭卷、笔试形式,全卷满分为100分,考试时间为60分钟。试卷包括选择题、填空题、计算题和应用题。选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算过程;计算题、应用题均应写出文字说明及演算步骤。选择题和填空题分值合计为50分。其余类型题目分值合计为50分。数学(一)中《高等数学》与《线性代数》试题的分值比例约为84:16
五、多元函数微分学
1. 知识范围
多元函数的概念 二元函数的的极限与连续的概念 偏导数、全微分的概念 全微分存在的必要条件与充分条件 二阶偏导数 复合函数、隐函数的求导法 偏导数的几何应用多元函数的极值、条件极值的概念 多元函数极值的必要条件 二元函数极值的充分条件极值的求法 拉格朗日乘数法。
2. 考核要求
(1)理解多元函数的概念,了解二元函数的几何意义和定义域。了解二元函数极限与连续概念(对计算不作要求)。
(2)理解偏导数的概念,了解全微分的概念和全微分存在的必要条件和充分条件。
(3)掌握二元初等函数的一、二阶偏导数的计算方法,会求全微分。
(4)掌握复合函数一、二阶偏导数的计算方法(含抽象函数)。
(5)掌握由方程 F(x, y,z) = 0 所确定的隐函数 z = z(x, y)的一阶、二阶偏导数的求法。
(6)会求空间曲面的切平面方程和法线方程。
(7)会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求二元函数的最大值、最小值并会解一些简单的应用问题。
六、 多元函数积分学
(一)二重积分
1.知识范围
二重积分的概念及性质 二重积分的计算 二重积分的几何应用。
2. 考核要求
(1)理解二重积分的概念,了解其性质。
(2)掌握二重积分(直角坐标系,极坐标系)的计算方法。
(3)会在直角坐标系内交换两次定积分的次序。
(4)会用二重积分求空间曲面所围成立体的体积。
(二) 曲线积分
1.知识范围
对坐标的平面曲线积分的概念和性质 对坐标的平面曲线积分的计算 格林(Green)公式 平面曲线积分与路径无关的条件。
2.考核要求
(1) 理解对坐标的平面曲线积分的概念及性质。
(2) 掌握对坐标的曲线积分计算的方法。
(3) 掌握格林公式,会应用平面曲线积分与路径无关的条件。
七、 无穷级数
(一)常数项级数
1.知识范围
常数项级数收敛、发散的概念 收敛级数的和 级数收敛的基本性质和必要条件 正项级数收敛性的比较判别法、比值判别法 交错级数的莱布尼茨(Leibniz)判别法 绝对收敛与条件收敛。
2.考核要求
(1)理解常数项级数收敛、发散以及收敛级数的和的概念。理解级数收敛的必要条件和基本性质。
(4)掌握正项级数的比值判别法,会用正项级数的比较判别法。
(5)会用莱布尼茨判别法判定交错级数收敛。
(6)了解级数绝对收敛与条件收敛的概念,会判定任意项级数的绝对收敛与条件收敛。
(二)幂级数
1. 知识范围