大家好,关于基本行程问题公务员考试很多朋友都还不太明白,今天小编就来为大家分享关于国家公务员考试行测之行程问题中的相遇问题的知识,希望对各位有所帮助!
本文目录
公务员考试中行程问题
公务员考试最重要的是要速度!
不是考察你小学数学学得好不好,关键是能否30秒内搞定这个题。
所以重要的是找到捷径。严格来说应该把四个选项列出来。
设AB俩地相距L.
第一次相遇时,A路程S1=L/2+20,
B路程S2=L/2-20
第二次相遇时,A一共走了S3=L+(L-160),
B一共走了S4=L+160
因为速度恒定,第一次相遇时走过路程比=速度比=
第二次相遇走过路程
S1/S2=S3/S4(其实应该立即想出这个等式)得出L=440KM
公务员考试行程问题之相遇问题怎么解
公务员考试行测数量关系题,行程问题之相遇问题解法:
公式法
速度和×相遇时间=相遇路程。
相遇问题的核心是“速度和”问题
甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么:
A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间。
二次相遇问题
甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。则有:
第二次相遇时走的路程是第一次相遇时走的路程的两倍。
国家公务员考试行测之行程问题中的相遇问题
从历年的考试大纲和历年的考试分析来看,数学运算主要涉及到以下几个问题:行程问题,比例问题、不定方程、抽屉问题、倒推法问题、方阵问题和倍差问题、利润问题、年龄问题、牛吃草问题、浓度问题、平均数、数的拆分、数的整除性、速算与巧算,提取公因式法、统筹问题、尾数计算法、植树问题、最小公倍数和公约数问题等等。每一类问题的题型都有相应的解法,只有熟练掌握这些解法,才能提高我们的解题速度,节约时间,在考试中考出优异的成绩。下面专家就行程问题中的相遇问题做专项的讲解。
行程问题的基础知识
行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。我们可以简单的理解成:相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。
相遇(相离)问题的基本数量关系:
速度和×相遇时间=相遇(相离)路程
追及问题的基本数量关系:
速度差×追及时间=路程差
在相遇(相离)问题和追及问题中,考生必须很好的理解各数量的含义及其在数学运算中是如何给出的,这样才恩能够提高解题速度和能力。
相遇问题:
知识要点:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间
相遇问题的核心是“速度和”问题。
例1、甲、乙两车从A、B两地同时出发,相向而行,如果甲车提前一段时间出发,那么两车将提前30分相遇。已知甲车速度是60千米/时,乙车速度是40千米/时,那么,甲车提前了多少分出发()分钟。
A. 30 B. 40 C. 50 D. 60
解析:.【答案】C,本题涉及相遇问题。方法1、方程法:设两车一起走完A、B两地所用时间为x,甲提前了y时,则有,(60+40)x=60[y+(x-30)]+40(x-30), y=50
方法2、甲提前走的路程=甲、乙共同走30分钟的路程,那么提前走的时间为,30(60+40)/60=50
例2、甲、乙二人同时从相距60千米的两地同时相向而行,6小时相遇。如果二人每小时各多行1千米,那么他们相遇的地点距前次相遇点1千米。又知甲的速度比乙的速度快,乙原来的速度为()
A.3千米/时 B.4千米/时 C.5千米/时 D.6千米/时
解析:.【答案】B,原来两人速度和为60÷6=10千米/时,现在两人相遇时间为60÷(10+2)=5小时,采用方程法:设原来乙的速度为X千米/时,因乙的速度较慢,则5(X+1)=6X+1,解得X=4。注意:在解决这种问题的时候一定要先判断谁的速度快。
方法2、提速后5小时比原来的5小时多走了5千米,比原来的6小时多走了1千米,可知原来1小时刚好走了5-1=4千米。
例3、某校下午2点整派车去某厂接劳模作报告,往返需1小时。该劳模在下午1点就离厂步行向学校走来,途中遇到接他的车,便坐上车去学校,于下午2点30分到达。问汽车的速度是劳模步行速度的()倍。
A. 5 B. 6 C. 7 D. 8
解析:【答案】A.方法1、方程法,车往返需1小时,实际只用了30分钟,说明车刚好在半路接到劳模,故有,车15分钟所走路程=劳模75分钟所走路程(2点15-1点)。设劳模步行速度为a,汽车速度是劳模的x倍,则可列方程,75a=15ax,解得 x=5。
方法2、由于,车15分钟所走路程=劳模75分钟所走路程,根据路程一定时,速度和时间成反比。所以车速:劳模速度=75:15=5:1
二次相遇问题:
知识要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。则有:
第二次相遇时走的路程是第一次相遇时走的路程的两倍。
例4、甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。请问A、B两地相距多少千米?
A.120 B.100 C.90 D.80
解析:【答案】A。方法1、方程法:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120。
方法2、乙第二次相遇所走路程是第一次的二倍,则有54×2-42+54=120。
总之,利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。
公务员考试行程问题公式
公务员考试行测数量关系题之行程问题的公式,比如:
路程=速度×时间
比例关系
公式:
时间相同,速度比=路程比;
速度相同,时间比=路程比;
路程相同,速度比=时间的反比。
相遇问题
公式:相遇时间=相遇路程÷速度和
追及问题
公式:追及时间=追及路程÷速度差
流水问题
公式:
顺水速度=船速+水速;
逆水速度=船速-水速;
船速=(顺水速度+逆水速度)÷2;
水速=(顺水速度-逆水速度)÷2。
火车过桥问题
公式:火车速度×时间=车长+桥长
国家公务员考试行程问题解题方法
学会用正反比例这类行程问题很简单
比例思想是考生在做题过程中常常会用到的一种思想,也是行测数量关系部分的重点考察内容,比例问题的难度属于中等偏上,相对于列方程求解这类常规方法而言,如果能巧用正反比,在行程问题中可以达到事半功倍的效果。
下面通过两个例题带大家体会如何利用正反比巧解行程问题。
例1.一战斗机从甲机场匀速开往乙机场,如果速度提高25%,可比原定时间提前12分钟到达;如果以原定速度飞行600千米后,再将速度提高1/3,可以提前5分钟到达。那么甲乙两机场的距离是多少千米?
A、750 B、800 C、900 D、1000
【答案】C。解析:第一次提速前后速度比4:5,则时间比为5:4,差了一份,相差12分钟,则原速走完全程需要1小时,即60分钟。第二次提速前后速度比为3:4,则时间比为4:3,差5分钟,即原来的速度走完后面的路程需要20分钟;可得原速走600千米需要60-20=40分钟,则原速为600千米÷40分钟=15千米/分钟,则全程为15千米/分钟×60分钟=900千米,故选择C选项。
列方程求解是解决数量关系问题的常规思路,但是在行程问题中列方程则比较繁琐,而比例法的好处在于摆脱方程的束缚,利用正反比,可达到快速求解的目的。
例2.一个小学生从家到学校,先用每分钟50米的速度走了2分钟,如果这样走下去,他上课就要迟到8分钟:后来他改用每分钟60米的速度前进,结果早到了5分钟,求这个学生从家到学校的距离是多少米?
A、1200 B、3200 C、4000 D、5600
【答案】:C。解析:V1=50,前2分钟走了100米,改变速度后V2=60,因为后一段路程两者走的距离相等,路程一定的时候,速度和时间成反比。
因为V1:V2=5:6,在速度提升之后,t1:t2=6:5,从慢8分钟到快5分钟,增加了13分钟,1个比例点对应13分钟。如果以50米/分钟的速度来走剩下的路程,应该走6个比例点,需要13×6=78分钟,
故S=78×50+100=3900+100=4000。
如果以60米/分钟的速度来走剩下的路程,应该走5个比例,需要13×5=65分钟,
故S=65×60+100=3900+100=4000.故答案为C。
上面两个例题通过合理使用正反比能很快的求出正确答案而在行测考试中时间是最宝贵的,可以说时间就是生命,能够快速而准确的解题就是致胜的关键!
公务员考试每日一题强心记还会为大家梳理更多的公考知识!
关于基本行程问题公务员考试和国家公务员考试行测之行程问题中的相遇问题的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站,以上信息来源网络并不代表本站观点。