公务员考试常见的应用题(公务员考试中的数学应用题多吗大概占多少分啊)


大家好,感谢邀请,今天来为大家分享一下公务员考试常见的应用题的问题,以及和公务员考试中的数学应用题多吗大概占多少分啊的一些困惑,大家要是还不太明白的话,也没有关系,因为接下来将为大家分享,希望可以帮助到大家,解决大家的问题,下面就开始吧!

公务员考试常见的应用题(公务员考试中的数学应用题多吗大概占多少分啊)

本文目录

公务员考试常见的应用题(公务员考试中的数学应用题多吗大概占多少分啊)

  1. 公务员考试题的百分数问题
  2. 公务员考试行测和申论都考些什么内容
  3. 公务员考试里面行测数量关系的题该怎么去做
  4. 公务员考试中的数学应用题多吗大概占多少分啊
  5. 公务员考试 数量关系 怎么提高

公务员考试题的百分数问题

百分数与配比问题

公务员考试常见的应用题(公务员考试中的数学应用题多吗大概占多少分啊)

百分数是分母为100的分数,表示某些数量关系非常方便.特别是处理一些有比例关系的问题,在衡量、比较时有很多优点.不仅在数学、物理、化学等自然科学方面,而且在工程技术、社会科学方面都有着非常广泛的应用.

小学高年级的同学都知道百分数,但不一定能算得很好,用得很活.因此我们专门编写一讲,通过许多例题和习题,帮助同学们学习百分数.

第一节讲的是“卖买”,实质上是讲(1+百分数)与(1-百分数)的一些计算.第二节介绍各种各样常见的百分数.第三节讲的是对小学同学说来较为困难的配比问题.不论哪一节,从计算技巧来说,都是训练分数、比例的计算本领.

一、商品的出售

商店出售商品,总是期望获得利润.例如某商品买入价(成本)是50元,以70元卖出,就获得利润70-50=20(元).通常,利润也可以用百分数来说,20÷50=0.4=40%,我们也可以说获得 40%的利润.因此

利润的百分数=(卖价-成本)÷成本×100%.

卖价=成本×(1+利润的百分数).

成本=卖价÷(1+利润的百分数).

商品的定价按照期望的利润来确定.

定价=成本×(1+期望利润的百分数).

定价高了,商品可能卖不掉,只能降低利润(甚至亏本),减价出售.减价有时也按定价的百分数来算,这就是打折扣.减价 25%,就是按定价的(1-25%)= 75%出售,通常就称为75折.因此

卖价=定价×折扣的百分数.

例1某商品按定价的 80%(八折或 80折)出售,仍能获得20%的利润,定价时期望的利润百分数是多少?

解:设定价是“1”,卖价是定价的 80%,就是0.8.因为获得20%

定价的期望利润的百分数是

答:期望利润的百分数是50%.

例2某商店进了一批笔记本,按 30%的利润定价.当售出这批笔记本的 80%后,为了尽早销完,商店把这批笔记本按定价的一半出售.问销完后商店实际获得的利润百分数是多少?

解:设这批笔记本的成本是“1”.因此定价是1×(1+ 30%)=1.3.其中

80%的卖价是 1.3×80%,

20%的卖价是 1.3÷2×20%.

因此全部卖价是

1.3×80%+1.3÷ 2×20%= 1.17.

实际获得利润的百分数是

1.17-1= 0.17=17%.

答:这批笔记本商店实际获得利润是 17%.

例3有一种商品,甲店进货价(成本)比乙店进货价便宜 10%.甲店按 20%的利润来定价,乙店按 15%的利润来定价,甲店的定价比乙店的定价便宜 11.2元.问甲店的进货价是多少元?

解:设乙店的进货价是“1”,甲店的进货价就是0.9.

乙店的定价是 1×(1+ 15%),甲店的定价就是 0.9×(1+20%).

因此乙店的进货价是

11.2÷(1.15- 0.9×1.2)=160(元).

甲店的进货价是

160× 0.9= 144(元).

答:甲店的进货价是144元.

设乙店进货价是1,比设甲店进货价是1,计算要方便些.

例4开明出版社出版的某种书,今年每册书的成本比去年增加 10%,但是仍保持原售价,因此每本利润下降了40%,那么今年这种书的成本在售价中所占的百分数是多少?

解:设去年的利润是“1”.

利润下降了40%,转变成去年成本的 10%,因此去年成本是 40%÷10%= 4.

在售价中,去年成本占

因此今年占 80%×(1+10%)= 88%.

答:今年书的成本在售价中占88%.

因为是利润的变化,所以设去年利润是1,便于衡量,使计算较简捷.

例5一批商品,按期望获得 50%的利润来定价.结果只销掉 70%的商品.为尽早销掉剩下的商品,商店决定按定价打折扣销售.这样所获得的全部利润,是原来的期望利润的82%,问:打了多少折扣?

解:设商品的成本是“1”.原来希望获得利润0.5.

现在出售 70%商品已获得利润

0.5×70%= 0.35.

剩下的 30%商品将要获得利润

0.5×82%-0.35=0.06.

因此这剩下30%商品的售价是

1×30%+ 0.06= 0.36.

原来定价是 1×30%×(1+50%)=0.45.

因此所打的折扣百分数是

0.36÷0.45=80%.

答:剩下商品打8折出售.

从例1至例5,解题开始都设“1”,这是基本技巧.设什么是“1”,很有讲究.希望读者从中能有所体会.

例6某商品按定价出售,每个可以获得45元钱的利润.现在按定价打85折出售8个,所能获得的利润,与按定价每个减价35元出售12个所能获得的利润一样.问这一商品每个定价是多少元?

解:按定价每个可以获得利润45元,现每个减价35元出售12个,共可获得利润

(45-35)×12=120(元).

出售8个也能获得同样利润,每个要获得利润

120÷8=15(元).

不打折扣每个可以获得利润45元,打85折每个可以获得利润15元,因此每个商品的定价是

(45-15)÷(1-85%)=200(元).

答:每个商品的定价是200元.

例7张先生向商店订购某一商品,共订购60件,每件定价100元.

张先生对商店经理说:“如果你肯减价,每件商品每减价1元,我就多订购3件.”商店经理算了一下,如果差价 4%,由于张先生多订购,仍可获得原来一样多的总利润.问这种商品的成本是多少?

解:减价4%,按照定价来说,每件商品售价下降了100×4%=4(元).因此张先生要多订购 4×3=12(件).

由于60件每件减价 4元,就少获得利润

4×60= 240(元).

这要由多订购的12件所获得的利润来弥补,因此多订购的12件,每件要获得利润

240÷12=20(元).

这种商品每件成本是

100-4-20=76(元).

答:这种商品每件成本76元.

二、各种各样的问题

百分数有着十分广泛的应用.这一节我们列举出有关百分数的各种各样的问题.

例8小明训练 3000米赛跑,如果速度提高 5%,那么时间缩短百分之几?(百分数保留一位小数.)

解:设原来的速度是“1”.

时间缩短的百分数是

也就是

答:时间缩短了4.8%.

从后一算式可以看出,无论是多少米赛跑,速度提高5%,时间就缩短了4.8%.换一句话说,考虑这一问题,与距离无关.

例9采了10千克蘑菇,它们的含水量为99%,稍经晾晒后,含水量下降到98%.晾晒后的蘑菇重多少千克?

解:晾晒前后蘑菇里的干物质(除了水分以外的其他成分)的重量是不变的.干物质的重量是

10×(1- 99%)= 0.1(千克).

晾晒后,干物质将占总重量的(1-98%).此时蘑菇重

0.1÷(1-98%)=5(千克).

答:晾晒后蘑菇重5千克.

这一例题的答案是否使你感到意外?

下一例题可以说是例9的补充.

例10有盐水若干升,加入一定量水后,盐水浓度降到3%,又加入同样多的水后,盐水浓度又降到2%,再加入同样多的水,此时盐水浓度是多少呢?又问未加水时盐水浓度是多少?

解:关键是先算出每次加多少水.

浓度为 3%,也就是盐 3份,水 97份,共100份.浓度下降为2%,原来3份,就成为 2%,加水后总共是

3÷2%=150(份).

因此加入的水是 150-100=50(份).

第三次加水后,浓度是

未加入水时的浓度是

答:三次加水后浓度是1.5%,未加水时浓度是6%.

例11把一个正方形的一边减少 20%,另一边增加2米,得到一个长方形.它与原来的正方形面积相等.问正方形的面积是多少?

解:设正方形的边长是“1”.因为长方形与原来的正方形面积相等,一边减少了 20%,另一边将增加

所以正方形的边长是

2÷25%=8(米).

正方形的面积是

8×8= 64(平方米).

答:正方形面积是64平方米.

例12有一堆糖果,其中奶糖占 45%,再放入16块水果糖后,奶糖就只占 25%.问这堆糖中奶糖有多少块?

解:奶糖占25%,其他糖果就是奶糖的

(100-25%)÷25%=3(倍).

原来其他糖果只有

1-45%=55%.

放入16块水果糖后是

45%×3=135%.

因此奶糖的块数是

16÷(135%- 55%)× 45%= 9(块).

答:这堆糖中,奶糖有9块.

例13有两包糖果,第一包的粒数与第二包粒数之比是2∶5.在第一包中奶糖占30%,在第二包中其他糖占42%,如果把两包糖合在一起,奶糖所占的百分数是多少?

解:设第一包为2份,第二包为5份.

第一包中奶糖是 2×30%=0.6(份).

第二包中奶糖是 5×(1-42%)= 2.9(份).

合起来后,奶糖占

(0.6+2.9)÷(2+ 5)= 50%.

答:合在一起,奶糖占50%.

这是一个典型问题,与第五讲第二节中求平均数,做法是一致的.

例14早上水缸注满了水,白天用去了其中的 20%,傍晚又用去27升,晚上用去剩下水的10%,最后剩下的水是半水缸多1升.问早上注入多少升水?

解:白天和傍晚用去水后剩下

1-20%=80%少 27(升)

晚上用去水是

80%×10%=8%少27×10%= 2.7(升).

白天、傍晚、晚上总共用去水

20%+8%再加(27-2.7)升,

它应该是50%少 1升.

因此50%-(20%+8%)是(27- 2.7)+ 1升.

早上水缸的水是

(27-2.7+1)÷(50%- 20%- 8%)= 115(升).

答:早上注入水缸中的水是115升.

三、浓度和配比

一碗糖水中有多少糖,这就要用百分比浓度来衡量.放多少水和放多少糖能配成某一浓度的糖水,这就是配比问题.在考虑浓度和配比时,百分数的计算扮演了重要的角色,并产生形形色色的计算问题,这是小学数学应用题中的一个重要内容.

从一些基本问题开始讨论.

例15基本问题一

(1)浓度为10%,重量为80克的糖水中,加入多少克水就能得到浓度为8%的糖水?

(2)浓度为20%的糖水40克,要把它变成浓度为40%的糖水,需加多少克糖?

解:(1)浓度10%,含糖 80×10%= 8(克),有水80-8=72(克).

如果要变成浓度为8%,含糖8克,糖和水的总重量是8÷8%=100(克),其中有水

100-8=92(克).

还要加入水 92- 72= 20(克).

(2)浓度为20%,含糖40×20%=8(克),有水40- 8= 32(克).

如果要变成浓度为40%,32克水中,要加糖x克,就有

x∶32=40%∶(1-40%),

例16基本问题二

20%的食盐水与5%的食盐水混合,要配成15%的食盐水900克.问:20%与5%食盐水各需要多少克?

解: 20%比15%多(20%-15%), 5%比15%少(15%-5%),多的含盐量

(20%-15%)×20%所需数量

要恰好能弥补少的含盐量

(15%-5%)×5%所需数量.

也就是

画出示意图:

相差的百分数之比与所需数量之比恰好是反比例关系.

答:需要浓度 20%的 600克,浓度 5%的 300克.

这一例题的方法极为重要,在解许多配比问题时都要用到.现在用这一方法来解几个配比的问题.

例17某人到商品买红、蓝两种笔,红笔定价5元,蓝笔定价9元.由于买的数量较多,商店就给打折扣.红笔按定价 85%出售,蓝笔按定价 80%出售.结果他付的钱就少了18%.已知他买了蓝笔 30支,问红笔买了几支?

解:相当于把两种折扣的百分数配比,成为1-18%=82%.

(85%-82%)∶(82%-80%)=3∶2.

按照基本问题二,他买红、蓝两种笔的钱数之比是2∶3.

设买红笔是x支,可列出比例式

5x∶9×30=2∶3

答:红笔买了 36支.

配比问题不光是溶液的浓度才有的,有百分数和比,都可能存在配比.要提请注意,例17中是钱数配比,而不是两种笔的支数配比,千万不要搞错.

例18甲种酒精纯酒精含量为72%,乙种酒精纯酒精含量为58%,混合后纯酒精含量为 62%.如果每种酒精取的数量比原来都多取15升,混合后纯酒精含量为63.25%.问第一次混合时,甲、乙两种酒精各取多少升?

解:利用例16的方法,原来混合时甲、乙数量之比是

后一次混合,甲、乙数量之比是

这与上一讲例 14是同一问题.都加15,比例变了,但两数之差却没有变.

5与2相差3,5与3相差2.前者3份与后者2份是相等的.把2∶5中前、后两项都乘2,3∶5中前、后两项都乘3,就把比的份额统一了,即

现在两个比的前项之差与后项之差都是5.15是5份,每份是3.原来这

答:第一次混合时,取甲酒精12升,乙酒精30升.

例19甲容器中有8%的食盐水300克,乙容器中有12.5%的食盐水 120克.往甲、乙两个容器分别倒入等量的水,使两个容器的食盐水浓度一样.问倒入多少克水?

解:要使两个容器中食盐水浓度一样,两容器中食盐水重量之比,要与所含的食盐重量之比一样.

甲中含盐量:乙中含盐量

= 300×8%∶120×12.5%

= 8∶5.

现在要使

(300克+倒入水)∶(120克+倒入水)=8∶5.

把“300克+倒入水”算作8份,“120克+倒入水”算作5份,每份是

(300-120)÷(8-5)= 60(克).

倒入水量是 60×8-300= 180(克).

答:每一容器中倒入 180克水.

例20甲容器有浓度为2%的盐水 180克,乙容器中有浓度为 9%的盐水若干克,从乙取出 240克盐水倒入甲.再往乙倒入水,使两个容器中有一样多同样浓度的盐水.问:

(1)现在甲容器中食盐水浓度是多少?

(2)再往乙容器倒入水多少克?

解:(1)现在甲容器中盐水含盐量是

180×2%+ 240×9%= 25.2(克).

浓度是

25.2÷(180+ 240)× 100%= 6%.

(2)“两个容器中有一样多同样浓度的盐水”,也就是两个容器中含盐量一样多.在乙中也含有25.2克盐.因为后来倒入的是水,所以盐只在原有的盐水中.在倒出盐水 240克后,乙的浓度仍是 9%,要含有 25.2克盐,乙容器还剩下盐水25.2÷9%=280(克),

还要倒入水420-280=140(克).

答:(1)甲容器中盐水浓度是6%;

(2)乙容器再要倒入140克水.

例21甲、乙两种含金样品熔成合金.如甲的重量是乙的一半,得到含

乙两种含金样品中含金的百分数.

解:因为甲重量增加,合金中含金百分数下降,所以甲比乙含金少.

用例17方法,画出如下示意图.

因为甲与乙的数量之比是1∶2,所以

(68%-甲百分数)∶(乙百分数-68%)

=2∶1

= 6∶3.

注意:6+3=2+7=9.

那么每段是

因此乙的含金百分数是

甲的含金百分数是

答:甲含金 60%,乙含金 72%.

用这种方法解题,一定要先弄清楚,甲和乙分别在示意图线段上哪一端,也就是甲和乙哪个含金百分数大.

公务员考试行测和申论都考些什么内容

公务员考试是公务员主管部门组织的担任主任科员以下及其他相当职务层次的非领导职务公务员的录用考试。都考什么内容?

公务员考试里面行测数量关系的题该怎么去做

公务员考试行测数量关系题解法,比如:

代入排除法

从选项入手,代入某个选项后,如果不符合已知条件,或推出矛盾,则可排除此选项。

①直接代入:把选项一个一个代入验证,直至得到符合题意的选项为止。

②选择性代入:根据数的特性(奇偶性、整除特性、尾数特性、余数特性等)先筛选,再代入排除的方法。

图解法

图解法运用的图形包括线段图、网状图/树状图、文氏图和表格等。

①线段图:用线段来表示数字和数量关系的方法。一般,用线段来表示量与量之间的倍数关系或者整个运动过程等,来解决和差倍比问题、行程问题等。

②网状图或树状图

A.网状图

一般由三组斜线组成,各组分别代表一种事物。从各自的顶端向下面走,分布率就从100%向下降。即用一个三角形网状表示某个对象在三个方面的分布情况。

B.树状图

通过列树状图列出某事件的所有可能的结果,求出其概率。

③文氏图

用一条封闭曲线直观地表示集合及其关系的图形,能直观地表现出集合之间的关系。其中圆表示一个类,两个圆相交,其相交部分就是两个类的共同部分。两个圆不相交,则说明这两个类没有共同元素。

④表格

将多次操作问题和还原问题中的复杂过程一一呈现,也可以用表格理清数量关系,帮助列方程。

分合法

利用分与合两种不同的思维解答数学运算的方法。

①分类讨论

指当不能对问题所给的对象进行统一研究时,需要对研究对象按某个标准进行分类,逐类研究,最后将结论汇总得解的方法。

需注意分类标准统一,分类情况不遗漏、不重复,不越级讨论。一般是多种情况分类讨论后,再利用加法原理求出总的情况数。

②整体法

A.将某一部分看成一个整体,在问题中总是一起考虑,而不单独求解;

B.不关心局部关系,只关心问题的整体情况,直接根据整体情况来考虑关系,这种形式经常用于平均数问题。

隔板法

解决的是相同元素的不同分堆问题,如果把n个相同的元素分给m个不同的对象,问有多少种不同分法的问题,可以采用“隔板法”。

适用隔板法需同时具备以下三个条件:

①所要分的元素必须完全相同;

②所要分的元素必须分完;

③每个对象至少分到一个。

比例法

题目中通常给出多个比例,需通过多个比例之间的联系,将多个比例统一在一起,然后求出答案的一种方法。

比例法答题步骤:写出比例,找不变量,统一份数。

①写出比例是指根据题目中的已知条件写成比例的形式;

②找不变量是指找出多个比例之间的不变量;

③统一份数是指将不变量的份数统一成一样的份数。

省考备考或参考:2022省考行测大招课

公务员考试中的数学应用题多吗大概占多少分啊

应用题一般20--25题左右,分值0.8一题(可能有的地方是1分),总分20样子。难度以小学,初中数学为主(普通难度及高难奥数题很少,大约共10道,以常见初中奥数题为主),高中数学几乎不用.

公务员考试 数量关系 怎么提高

可以记忆一些常用的公式:

一、行程问题:

简单相遇/追及:

例小丽、小美、小凡三人决定各自开车自驾游从S市出发前往L市。小凡最先出发,若小美比小凡晚出发10分钟,则小美出发后40分钟追上小凡;若小丽又比小美晚出发20分钟,则小丽出发后1小时30分钟追上小凡;假设S市与L市相距足够远,且三人均匀速行驶,则小丽出发后()小时追上小美。

A.2 B.3 C.4 D.5

【中公解析】选D。根据题干信息,会发现出现频次较高词汇为“追上”,所以本题可以分解出三次追及问题,反复利用追及距离公式进行求解即可。

1、小美追及小凡:追及距离=小凡先出发10分钟行进距离。

2、小丽追及小凡:追及距离=小凡较小丽提前出发30分钟所行进的距离。

3、小丽追及小美:追及距离=小美比小丽提前出发20分钟所行进距离。

进行求解即可算得t=300分钟,即5个小时,选D。

二、容斥问题:

(1)二者容斥相关公式:

例某班共有200人,现在调查大家对语数英三名授课老师的满意程度。100人对语文老师满意,80人对数学老师满意,70人对英语老师满意。有30人既对语文老师满意又对数学老师满意,有20人既对语文老师满意又对英语老师满意,有10人既对数学老师满意有对英语老师满意,还有5人对3位老师都满意,问对三位老师都不满意的有几人?

A.1 B.5 C.6 D.10

【中公解析】选B。大家在解答容斥问题的时候,要仔细阅读题目,根据题目的已知条件选择相对应的公式,进行解答即可。根据题意全集为200,其中

三、计算问题

1、等差数列:

2、等比数列:

例一次数学考试中老师给全班同学的成绩进行排名后发现,有11个同学的成绩是相同的并与其他同学的成绩刚好构成等差数列,且相同成绩的11个同学的分数刚刚好是等差数列的中项。排名第一的学生得99分,排名最后的学生得31分,已知全班总分为2015分,求全班有多少个学生?

A.25 B.27 C.29 D.31

【中公解析】选D。首先,我们要先将文字信息翻译成数学语言。根据题意,求n?根据题目中所给已知条件,我们首先先根据等差数列的性质将进行求解。根据选项,n为奇数,故。所以根据求和公式,进行代入,解得n=31。选D

以上就是中公教育专家为大家总结的关于行测备考过程中数量关系部分的常用公式,数学中的公式没有死记硬背的,应该在理解的基础上灵活的运用才好,所以大家仍然要继续努力,多做题目,从而提高做题速度及准确度。

关于公务员考试常见的应用题到此分享完毕,希望能帮助到您,以上信息来源网络并不代表本站观点。

网上报名
  • 姓名:
  • 专业:
  • 层次: 分数:
  • 电话:
  • QQ/微信:
  • 地址:

文中图片素材来源网络,如有侵权请联系644062549@qq.com删除

提交报名同学/家长:允许择校老师帮您择校调剂,同意《隐私保障》条例,并允许推荐给更多服务商为您提供服务!

转载注明出处:http://www.52souxue.com