方阵问题公务员考试(国考行测:方阵问题)


很多朋友对于方阵问题公务员考试和国考行测:方阵问题不太懂,今天就由小编来为大家分享,希望可以帮助到大家,下面一起来看看吧!

方阵问题公务员考试(国考行测:方阵问题)

本文目录

方阵问题公务员考试(国考行测:方阵问题)

  1. 国考行测:方阵问题
  2. 公务员方阵问题求教,不胜感激参加奥运
  3. 国考公务员数量关系可以全蒙c吗
  4. 公务员考试行测数学运算解题方法之方阵问题
  5. 国家公务员考试行测之行程问题中的相遇问题

国考行测:方阵问题

国考公务员考试行测题之方阵问题的应试技巧,或参考:

方阵问题公务员考试(国考行测:方阵问题)

运算公式

1)方阵总数=最外层每边数目的平方;

2)方阵最外一层总数比内一层总数多8(行数和列数分别大于2);

3)方阵最外层每边数目=(方阵最外层总数÷4)+1;

4)方阵最外层总数=[最外层每边数目-1]×4;

5)去掉一行、一列的总数=去掉的每边数目×2-1。

6)偶数型实心方阵的最外层每边人数=2×层数

方阵的类型

1)实心方阵:中心区域没有空缺,叫实心方阵。

2)奇数型实心方阵:方阵每行每列都为奇数,叫奇数型实心方阵,其几何中心恰好存在一个元素。

3)偶数型实心方阵:方阵每行每列都为偶数,叫偶数型实心方阵,其几何中心不存在元素,其中心区域由4个元素构成。

答题思路

1)先准确判断方阵的类型,了解方阵中的一些量(如层数、最外层人数、最里层人数、总人数)之间的关系。

2)运用相关公式,用多种方法来解题。

公务员方阵问题求教,不胜感激参加奥运

公务员考试行测,方阵问题:

方阵问题的运算公式:

1)方阵总数=最外层每边数目的平方;

2)方阵最外一层总数比内一层总数多8(行数和列数分别大于2);

3)方阵最外层每边数目=(方阵最外层总数÷4)+1;

4)方阵最外层总数=[最外层每边数目-1]×4;

5)去掉一行、一列的总数=去掉的每边数目×2-1。

6)偶数型实心方阵的最外层每边人数=2×层数

方阵的类型

1)实心方阵:中心区域没有空缺,叫实心方阵。

2)奇数型实心方阵:方阵每行每列都为奇数,叫奇数型实心方阵,其几何中心恰好存在一个元素。

3)偶数型实心方阵:方阵每行每列都为偶数,叫偶数型实心方阵,其几何中心不存在元素,其中心区域由4个元素构成。

解题思路

1)先准确判断方阵的类型,要搞清方阵中的一些量(如层数、最外层人数、最里层人数、总人数)之间的关系。

2)运用相关公式,用多种方法来解题。

(可查看行测复习资料提升应试技巧)

国考公务员数量关系可以全蒙c吗

根据往年国考公务员数量关系的命题和参考答案统计是存在大多数答案为C的,但这是在做题时间不够的情况下才使用的下下策,但为了保证能够取得更加好的分数以及提高自己的正确率,就需要平时用功的复习和练题,多刷题多练题,提高自己的做题速度,学习好数量关系的相关知识点,这样才能把国考公务员考试考好

公务员考试行测数学运算解题方法之方阵问题

学生排队,士兵列队,横着排叫做行,竖着排叫做列。如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。

核心公式:

1.方阵总人数=最外层每边人数的平方(方阵问题的核心)

2.方阵最外层每边人数=(方阵最外层总人数÷4)+1

3.方阵外一层总人数比内一层总人数多2

4.去掉一行、一列的总人数=去掉的每边人数×2-1

例1学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人?

A.256人 B.250人 C.225人 D.196人(2002年A类真题)

解析:方阵问题的核心是求最外层每边人数。

根据四周人数和每边人数的关系可以知:

每边人数=四周人数÷4+1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就可以求了。

方阵最外层每边人数:60÷4+1=16(人)

整个方阵共有学生人数:16×16=256(人)。

所以,正确答案为A。

例2参加中学生运动会团体操比赛的运动员排成了一个正方形队列。如果要使这个正方形队列减少一行和一列,则要减少33人。问参加团体操表演的运动员有多少人?

分析如下图表示的是一个五行五列的正方形队列。从图中可以看出正方形的每行、每列人数相等;最外层每边人数是5,去一行、一列则一共要去9人,因而我们可以得到如下公式:

去掉一行、一列的总人数=去掉的每边人数×2-1

·····

·····

·····

·····

·····

解析:方阵问题的核心是求最外层每边人数。

原题中去掉一行、一列的人数是33,则去掉的一行(或一列)人数=(33+1)÷2=17

方阵的总人数为最外层每边人数的平方,所以总人数为17×17=289(人)

下面几道习题供大家练习:

1.小红把平时节省下来的全部五分硬币先围成个正三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币的总价值是:

A.1元 B.2元 C.3元 D.4元(2005年中央真题)

2.某仪仗队排成方阵,第一次排列若干人,结果多余100人;第二次比第一次每行、每列都增加3人,又少29人。仪仗队总人数为多少?

答案:1.C 2. 500人

国家公务员考试行测之行程问题中的相遇问题

从历年的考试大纲和历年的考试分析来看,数学运算主要涉及到以下几个问题:行程问题,比例问题、不定方程、抽屉问题、倒推法问题、方阵问题和倍差问题、利润问题、年龄问题、牛吃草问题、浓度问题、平均数、数的拆分、数的整除性、速算与巧算,提取公因式法、统筹问题、尾数计算法、植树问题、最小公倍数和公约数问题等等。每一类问题的题型都有相应的解法,只有熟练掌握这些解法,才能提高我们的解题速度,节约时间,在考试中考出优异的成绩。下面专家就行程问题中的相遇问题做专项的讲解。

行程问题的基础知识

行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。我们可以简单的理解成:相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。

相遇(相离)问题的基本数量关系:

速度和×相遇时间=相遇(相离)路程

追及问题的基本数量关系:

速度差×追及时间=路程差

在相遇(相离)问题和追及问题中,考生必须很好的理解各数量的含义及其在数学运算中是如何给出的,这样才恩能够提高解题速度和能力。

相遇问题:

知识要点:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间

相遇问题的核心是“速度和”问题。

例1、甲、乙两车从A、B两地同时出发,相向而行,如果甲车提前一段时间出发,那么两车将提前30分相遇。已知甲车速度是60千米/时,乙车速度是40千米/时,那么,甲车提前了多少分出发()分钟。

A. 30 B. 40 C. 50 D. 60

解析:.【答案】C,本题涉及相遇问题。方法1、方程法:设两车一起走完A、B两地所用时间为x,甲提前了y时,则有,(60+40)x=60[y+(x-30)]+40(x-30), y=50

方法2、甲提前走的路程=甲、乙共同走30分钟的路程,那么提前走的时间为,30(60+40)/60=50

例2、甲、乙二人同时从相距60千米的两地同时相向而行,6小时相遇。如果二人每小时各多行1千米,那么他们相遇的地点距前次相遇点1千米。又知甲的速度比乙的速度快,乙原来的速度为()

A.3千米/时 B.4千米/时 C.5千米/时 D.6千米/时

解析:.【答案】B,原来两人速度和为60÷6=10千米/时,现在两人相遇时间为60÷(10+2)=5小时,采用方程法:设原来乙的速度为X千米/时,因乙的速度较慢,则5(X+1)=6X+1,解得X=4。注意:在解决这种问题的时候一定要先判断谁的速度快。

方法2、提速后5小时比原来的5小时多走了5千米,比原来的6小时多走了1千米,可知原来1小时刚好走了5-1=4千米。

例3、某校下午2点整派车去某厂接劳模作报告,往返需1小时。该劳模在下午1点就离厂步行向学校走来,途中遇到接他的车,便坐上车去学校,于下午2点30分到达。问汽车的速度是劳模步行速度的()倍。

A. 5 B. 6 C. 7 D. 8

解析:【答案】A.方法1、方程法,车往返需1小时,实际只用了30分钟,说明车刚好在半路接到劳模,故有,车15分钟所走路程=劳模75分钟所走路程(2点15-1点)。设劳模步行速度为a,汽车速度是劳模的x倍,则可列方程,75a=15ax,解得 x=5。

方法2、由于,车15分钟所走路程=劳模75分钟所走路程,根据路程一定时,速度和时间成反比。所以车速:劳模速度=75:15=5:1

二次相遇问题:

知识要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。则有:

第二次相遇时走的路程是第一次相遇时走的路程的两倍。

例4、甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。请问A、B两地相距多少千米?

A.120 B.100 C.90 D.80

解析:【答案】A。方法1、方程法:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120。

方法2、乙第二次相遇所走路程是第一次的二倍,则有54×2-42+54=120。

总之,利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。

文章到此结束,如果本次分享的方阵问题公务员考试和国考行测:方阵问题的问题解决了您的问题,那么我们由衷的感到高兴!

网上报名
  • 姓名:
  • 专业:
  • 层次: 分数:
  • 电话:
  • QQ/微信:
  • 地址:

文中图片素材来源网络,如有侵权请联系644062549@qq.com删除

提交报名同学/家长:允许择校老师帮您择校调剂,同意《隐私保障》条例,并允许推荐给更多服务商为您提供服务!

转载注明出处:http://www.52souxue.com