公务员考试排列组合(公务员行测备考:如何攻破排列组合)


大家好,今天小编来为大家解答以下的问题,关于公务员考试排列组合,公务员行测备考:如何攻破排列组合这个很多人还不知道,现在让我们一起来看看吧!

公务员考试排列组合(公务员行测备考:如何攻破排列组合)

本文目录

公务员考试排列组合(公务员行测备考:如何攻破排列组合)

  1. 2018年国家公务员考试行测排列组合解题技巧有哪些
  2. 请问,国家公务员考试中,排列组合基本概念是什么呢
  3. 省考行测:数量关系排列组合问题
  4. 公务员考试,行测排列组合题怎么做啊
  5. 公务员行测备考:如何攻破排列组合

2018年国家公务员考试行测排列组合解题技巧有哪些

排列组合题是行政能力测试中判断推理模块逻辑判断部分常考的题型,然而由于这种题目已知信息较为复杂,使得很多同学难以在很短时间内将其解答出来。华图教育,提醒备战2018年国家公务员考试的广大考生注意,解答排列组合问题,必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题;同时要抓住问题的本质特征,灵活运用基本原理和公式进行分析,还要注意讲究一些策略和方法技巧

公务员考试排列组合(公务员行测备考:如何攻破排列组合)

1.间接法

即部分符合条件排除法,采用正难则反,等价转换的策略。为求完成某件事的方法种数,如果我们分步考虑时,会出现某一步的方法种数不确定或计数有重复,就要考虑用分类法,分类法是解决复杂问题的有效手段,而当正面分类情况种数较多时,则就考虑用间接法计数。

例:从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法?

A.240B.310C.720D.1080

正确答案【B】

解析:此题从正面考虑的话情况比较多,如果采用间接法,男女至少各一人的反面就是分别只选男生或者女生,这样就可以变化成C(11,4)-C(6,4)-C(5,4)=310。

2.科学分类法

问题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后排列。

对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生。同时明确分类后的各种情况符合加法原理,要做相加运算。

例:某单位邀请10为教师中的6为参加一个会议,其中甲,乙两位不能同时参加,则邀请的不同方法有()种。

A.84B.98C.112D.140

正确答案【D】

解析:按要求:甲、乙不能同时参加分成以下几类:

a.甲参加,乙不参加,那么从剩下的8位教师中选出5位,有C(8,5)=56种;

b.乙参加,甲不参加,同(a)有56种;

c.甲、乙都不参加,那么从剩下的8位教师中选出6位,有C(8,6)=28种。

故共有56+56+28=140种。

3.特殊优先法

特殊元素,优先处理;特殊位置,优先考虑。对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。

例:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有()

(A)280种(B)240种(C)180种(D)96种

正确答案:【B】

解析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A(5,3)=10种不同的选法,所以不同的选派方案共有C(4,1)×A(5,3)=240种,所以选B。

4.捆绑法

所谓捆绑法,指在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个整体参与排序,然后再单独考虑这个整体内部各元素间顺序。注意:其首要特点是相邻,其次捆绑法一般都应用在不同物体的排序问题中。

例:5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?

A.240B.320C.450D.480

正确答案【B】

解析:采用捆绑法,把3个女生视为一个元素,与5个男生进行排列,共有A(6,6)=6x5x4x3x2种,然后3个女生内部再进行排列,有A(3,3)=6种,两次是分步完成的,应采用乘法,所以排法共有:A(6,6)×A(3,3)=4320(种)。

5.选“一”法,类似除法

对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一同进行排列,然后用总的排列数除以这几个元素的全排列数。这里的“选一”是说:和所求“相似”的排列方法有很多,我们只取其中的一种。

例:五人排队甲在乙前面的排法有几种?

A.60B.120C.150D.180

正确答案【A】

解析:五个人的安排方式有5!=120种,其中包括甲在乙前面和甲在乙后面两种情形(这里没有提到甲乙相邻不相邻,可以不去考虑),题目要求之前甲在乙前面一种情况,所以答案是A(5,5)÷A(2,2)=60种。

6.插空法

所谓插空法,指在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置。

注意:a.首要特点是不邻,其次是插空法一般应用在排序问题中。

b.将要求不相邻元素插入排好元素时,要注释是否能够插入两端位置。

c.对于捆绑法和插空法的区别,可简单记为“相邻问题捆绑法,不邻问题插空法”。

例:若有甲、乙、丙、丁、戊五个人排队,要求甲和乙两个人必须不站在一起,且甲和乙不能站在两端,则有多少排队方法?

A.9B.12C.15D.20

正确答案【B】

解析:先排好丙、丁、戊三个人,然后将甲、乙插到丙、丁、戊所形成的两个空中,因为甲、乙不站两端,所以只有两个空可选,方法总数为A(3,3)×A(2,2)=12种。

7.插板法

所谓插板法,指在解决若干相同元素分组,要求每组至少一个元素时,采用将比所需分组数目少1的板插入元素之间形成分组的解题策略。

注意:其首要特点是元素相同,其次是每组至少含有一个元素,一般用于组合问题中。

例:将8个完全相同的球放到3个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?

A.21B.24C.28D.45

正确答案【A】

解析:解决这道问题只需要将8个球分成三组,然后依次将每一组分别放到一个盒子中即可。因此问题只需要把8个球分成三组即可,于是可以将8个球排成一排,然后用两个板插到8个球所形成的空里,即可顺利的把8个球分成三组。其中第一个板前面的球放到第一个盒子中,第一个板和第二个板之间的球放到第二个盒子中,第二个板后面的球放到第三个盒子中去。因为每个盒子至少放一个球,因此两个板不能放在同一个空里且板不能放在两端,于是其放板的方法数是C(7,2)=21种。(注:板也是无区别的)

请问,国家公务员考试中,排列组合基本概念是什么呢

排列组合是公务员考试行测中的一个常考题型,它是数量关系中比较特殊的题型,研究对象和方法独特、知识系统相对独立,同时也是另一个重点考查题型——概率问题的基础。从近几年的公务员考试形式来看,对它的考查难度逐年上升,题型愈发灵活。那么,将此部分的内容弄懂、吃透就显得更为重要了。精图教育专家在此助考生一臂之力。

对于数量关系,需要大家能根据题干含义准确、快速地列式和计算。对于排列组合数的计算,绝大部分同学能够轻松应对,但对于如何根据题意快速、准确地列出式子,成为最大的难点,根源就在于对相关的理论知识和方法似懂非懂,理解不透彻。接下来,中公教育专家为考生拨开排列组合的迷雾。

排列组合的本质是计数,与之相关的有两个计数原理:加法计数原理和乘法计数原理,分别在什么时候去用它们,需要记住一句口诀:分类用加法、分步用乘法。具体来看:

一、分类计数(加法原理)

完成一件事,有多种不同的路径,每种路径之间相互无关联,缺了任何一种路径都能完成这件事,叫做分类。总的方法数等于各种路径的方法数之和。通过下面的例子来给大家进行讲解:

例1.从甲地到乙地每天有直达班车3班,从甲地到丙地每天有直达班车2班,从丙地到乙地每天有直达班车4班,则从甲地到乙地共有多少种不同的乘车方法?

中公解析:可以分成两种不同的乘车方式:

第一种,直达:甲→→乙;第二种,中转:甲→→丙→→乙

这两种不同的路径之间相互无关联。缺了直达,可通过中转实现从甲最终到乙这个目标;缺了中转,可通过甲直达到乙。即缺了任何一种路径都能完成这件事,叫做分类。“分类用加法”,总的方法数等于这两类方法数之和。

二、分步计数(乘法原理):

完成一件事,需要多个步骤,各个步骤之间紧密相连、环环相扣,缺了任何一个步骤都没办法完成这件事,叫做分步。总的方法数等于各个步骤方法数的乘积。

继续讨论例1,上面已对它进行了分类,第二种路径的方法数未知,继续探讨。将第二种中转的路径:甲→→丙→→乙分为两步。①:从甲→→丙;②:从丙→→乙。这两个步骤之间紧密相关,缺了任何一个步骤都没办法实现从甲到乙这个目标,叫做分步。“分步用乘法”,中转的方法数等于每步方法数的乘积,即第二种中转的方法数为2×4=8种。

再根据加法原理可得:从甲地到乙地共有3+8=11种不同的乘车方式。

并不是所有的方法数都能够轻松枚举出来,在正式考试过程中,绝大部分需要利用排列数和组合数来统计方法数。紧接着我们再来一起探讨另一组易混淆概念:组合和排列。

三、组合(不需要考虑顺序):

从n个不同元素中选出m(m≤n)个元素组成一组,称为从n个不同元素中取出m(m≤n)个元素的一个组合。用来计数。

例2:从全班30个人中选取7个人打扫卫生,共有多少种不同的选取方式。

中公解析:题干只要求从30个人当中选出7个人,至于先选谁后选谁,对于整个结果不造成影响,所以不需要考虑顺序,即为组合,用来计数。

四、排列(需要考虑顺序):

从n个不同元素中任取m(m≤n)个元素按照一定的顺序排队,称为从n个不同元素中任取m(m≤n)个元素的排列。用来计数。

例3:下个星期,从全班30个人中选派7个人来值班,共有多少种不同的安排方式。

中公解析:先从30个人当中选出7个人,对于单个人而言,安排他在周一或周二等不同日期值班是有区别的,顺序对整个结果造成影响,即需要考虑顺序,为排列。用来计数。

精图教育专家相信考生在准确理解以上两组易混淆概念之后,对何时用排列数或组合数计数以及何时用加法或乘法计数原理就有了更清楚的认识。在之后解决相应问题的过程中,希望大家能够运用以上方法技巧准确、快速地列式,实现成功解题第一步!

省考行测:数量关系排列组合问题

说起行测中的排列组合问题对于各位考生来说可谓熟悉又陌生,熟悉的是在高中的数学学习中多多少少有所接触,陌生的是这类问题即使学过很多遍也是吃不透抓不准,中公教育专家在此为各位考生带来排列组合问题全面解析。

一、什么是排列组合问题

排列组合问题属于计数问题中的一类问题,其本质是作为计数问题的工具存在。

例如,“小李手上有3个不同的工作要做,请问小李完成这三个工作的顺序共有多少种?”即是一道排列组合题目。

要掌握好排列组合问题首先是要全面透析计数问题的两个计数原理,其次是要熟练应用排列和组合这两个计数工具。

二、两个计数原理

1、加法原理:所谓加法原理是指在完成一件事情的时候,需要将这件事情划分成若干类别,若每个类别中的方法可以独立完成这件事情,且分类没有重复和遗漏的时候,则完成这件事情的总方法数即是每一类别方法数的加和。

例1:从甲地到乙地只能乘坐高铁、飞机或长途汽车,每天高铁有7趟,航班有4趟,长途汽车5趟,则从甲地到乙地每天有多少种不同的方式?

中公解析:按照加法原理,每天从甲地到乙地的不同方式可以按照交通工具不同分成3类:乘坐高铁、乘坐飞机、乘坐长途汽车,这3个类别各有7、4、5种不同方式,则共有7+4+5=16种不同的方式从甲地到乙地。

2、乘法原理:所谓乘法原理是指在完成一件事情的时候,需要将这件事情分成若干个步骤,若每一个步骤内的方法数刚好完成这个步骤,所有步骤实施完恰好完成这件事情,则完成这件事情的总方法数即是每一步骤方法数的乘积。

例2:从甲地去丙地必须经过乙地中转,从甲地去乙地有2列火车,3趟长途大巴,从乙地去丙地有4列火车,2趟长途大巴,则从甲地去丙地共有多少种不同的方式?

中公解析:按照乘法原理,从甲地去丙地必然需要分成两步:第一步从甲地到乙地,第二步从乙地到丙地,从甲地到乙地共有2+3=5种不同方式,从乙地到丙地共有4+2=6种不同方式,则共有5×6=30种不同的方式从甲地去丙地。

简单来讲我们可以将乘法原理理解为分类相加的计数思维,将加法原理理解为分步相乘的计算思维。计数过程中选择分类还是分步的核心区别就是考虑是否能够独立完成这件事情。需要注意的是在考虑计数问题的时候有时只需使用到其中一个计数原理,如例1所示;但有时两个计数原理都会被用到,如例2所示。

三、排列与组合

排列和组合的区别是看题干中的计数问题对元素顺序有无要求,有顺序要求用排列,无顺序要求用组合。简单来说即是改变元素顺序对计数结果有影响用排列,如例1;改变元素顺序对计数结果无影响用组合,如例2。

相信各位考生对于排列组合问题只要能掌握好加法、乘法两个原理和排列、组合两个工具,很多问题自然就会迎刃而解。

公务员考试,行测排列组合题怎么做啊

公务员考试行测中的排列组合题目一般不会出的太难,只需要各位考生掌握基本的原理和常用解题方法就能够应对,并且做好排列组合的题目是做好概率题目的基础,因此,学好排列组合显得尤为重要,在此跟大家分享两种排列组合中常见的解题方法,捆绑法和插空法。

一、捆绑法

应用环境:题干要求某几个元素必须相邻。

使用方式:先将相邻元素捆绑在一起,看成一个整体;再将这个整体看做一个大元素,和其他元素一起排列。

例1.甲、乙、丙、丁、戊,五个同学排队照相,甲乙同学必须站在一起,问有多少种站法?()

A、20 B、24 C、40 D、48

二、插空法

应用环境:题干要求某几个元素不得相邻。

使用方式:先排其它元素,再将不相邻元素插空。

例2.甲、乙、丙、丁、戊,五个同学排队照相,甲乙同学不能站在一起,问有多少种站法?()

A、36 B、48 C、60 D、72

中公解析:因为甲乙不能站在一起,即不相邻,所以使用插空法,先安排剩余的丙丁戊三个人,共有A3 3=6种排列方式,再把甲乙插入到丙丁戊形成的4个空当中,共有A4 2=12种排列方式,所以共有6×12=72种排列方式。因此选择D。

中公教育专家相信大家通过上述例题,大家会发现这两种方法并不难,只需要我们掌握应用环境和应用方法就可以应对了。

公务员行测备考:如何攻破排列组合

排列组合是属于计数问题,两个计数原理是根本。加法原理指做一件事情是分类完成,那么做这件事情总的情况数等于每类情况数相加;乘法原理指做一件事情是分步完成,那么做这件事情总的情况数等于每步情况数相乘。例如:王某从甲地出差去乙地,若每天从甲地到乙地分别有4趟航班、7列火车、5班长途汽车,问王某从甲地到乙地共有多少种不同的方法?首先明确要做的事情是从甲地到乙地,根据条件不难发现可以坐飞机,或者坐火车,或者坐汽车,不管是哪种方式都可以完成这件事情,明显分成3类,那可以利用加法原理把每一类情况数相加即可,4+7+5=16种,王某从甲地到乙地共有16种方法。例如:小王从甲地到乙地有3条不同的路线,从乙地到丙地有5条不同的路线,问小王从甲地到丙地共有多少种不同的路线?明确要完成的事情是从甲地到丙地,从题干条件来看,必须先从甲到乙,再从乙到丙才能完成,那么是分成2步完成的,利用乘法原理把每一步的情况数相乘即可,3*5=15,小李从甲地到丙地共15种不同的路线。

上两个例子大家都会觉得比较简单,原因是题干中的条件已经很明显地体现出分类的痕迹了,分成3类,我们要做的无非就是把3类的情况数相加而已;同理第2个例子明显体现出分步的痕迹了,分成2步,相乘即可,因此不难。但是考试题需要考生根据题干条件去思考要完成这件事情该如何分类,分成几类,或者该如何分步,分成几步,只有把这个问题想清楚,才能做对排列组合题,然而很多考生做题时有一个很不好的习惯,就是一看到排列组合题就马上去想用A还是用C,根本不去思考题干的内在要求,仅仅只是凭感觉甚至就是随便用排列数或者组合数去随意的套结果。做题整体思路应该是,先明确题目要求做什么事情,再思考要完成这件事情该分类还是分步以及分几类分几步,接下就是具体计算每一类或者每一步的情况数,最后就分类相加分步相乘。下面通过几个例子具体说明。

例1.有60分,80分的邮票各两张,现在用邮票构成的邮资有多少种不同的情况?

解析:这道题要求用邮票构成邮资,没有限定到底用几张,那么用一张是可以构成邮资,两张可以,三张可以,四张也可以,所以要完成这件事情,可以分成四类。一张:60,80,2种情况;两张:60+60=120,80+80=160,60+80=140,3种情况;三张:60+60+80=200,80+80+60=220,2种;四张:60+60+80+80=280,1种;最后把4类情况数相加即可,2+3+2+1=8共8种。

例2.某单位有老陶和小刘等5名工作人员,需安排在星期一至星期五的中午值班,每人一次,若老陶星期一外出开会不能值班,小刘有其他的事不能排在星期五,则不同的排法共有几种?

解析:题干要求给5名工作人员安排周一到周五值班,老陶不能在周一,小刘不能在周五。那么怎么完成这件事情呢?同时考虑2个人比较麻烦,可先考虑老陶,因为不能在周一,那么老陶可以在周二,周三,周四,周五,那不妨以老陶作为分类的标准,可以划分成4类。老陶在周二时,小刘不能在周五,那么小刘只能在周一,周三,周四选择一天来值班,然后剩下3个人在剩下三天任意排列即可,则情况数等于3×A(3,3)=18种;老陶在周三时,小刘不能在周五,那么小刘只能在周一,周二,周四选择一天来值班,然后剩下3个人在剩下三天任意排列即可,则情况数等于3×A(3,3)==18种;老陶在周四时,小刘不能在周五,那么小刘只能在周一,周二,周三选择一天来值班,然后剩下3个人在剩下三天任意排列即可,,则情况数等于3×A(3,3)==18种;老陶在周五时,小刘不能在周五,那么小刘只能在周一,周二,周三,周四选择一天来值班,然后剩下3个人在剩下三天任意排列即可,,则情况数等于4×A(3,3)==24种,最后分类相加即可,18+18+18+24=78种。

总结:解决排列组合问题时,一定要考虑清楚该分类还是该分步,以及如何分类如何分步。

OK,本文到此结束,希望对大家有所帮助。

网上报名
  • 姓名:
  • 专业:
  • 层次: 分数:
  • 电话:
  • QQ/微信:
  • 地址:

文中图片素材来源网络,如有侵权请联系644062549@qq.com删除

提交报名同学/家长:允许择校老师帮您择校调剂,同意《隐私保障》条例,并允许推荐给更多服务商为您提供服务!

转载注明出处:http://www.52souxue.com