大家好,感谢邀请,今天来为大家分享一下公务员考试余数的问题,以及和公务员考试余数问题(详细过程)的一些困惑,大家要是还不太明白的话,也没有关系,因为接下来将为大家分享,希望可以帮助到大家,解决大家的问题,下面就开始吧!
本文目录
公务员考试余数问题(详细过程)
A除以B商是5余5--这句其实就是在说A是5的倍数
同理A也是6,7的倍数。所以A就是5,6,7的最小公倍数210的N倍。因为和不超过400,所以A只能是210
并且A除以B商是5余5>>B就是(210-5)/5=41
同理C=34,D=29.
所以一共就是314
数学题参加公务员考试的题求解不胜感激。
你好,中政行测很高兴为您解答。
第一步:将条件简化可知,每个数除以6所得的余数以12个数为周期重复出现,那么68÷12=5余8,即最后一个数字的余数与第八个数的余数保持一致。
第二步:通过条件,前两个数是0和3,而个数的3倍恰好等于它两边两个数之和,可求出前八位数,0,1,3,8,21,55,144,377.
第三步,直接算最后一位数除以6的余数,377÷6=17余5.故正确答案为D。
这道题目是数学运算中的计算问题,属于基础知识。更多详细的讲解可登陆http://www.zzxingce.com/paper/paper.php?topid=3。
公务员考试 数量关系 怎么提高
可以记忆一些常用的公式:
一、行程问题:
简单相遇/追及:
例小丽、小美、小凡三人决定各自开车自驾游从S市出发前往L市。小凡最先出发,若小美比小凡晚出发10分钟,则小美出发后40分钟追上小凡;若小丽又比小美晚出发20分钟,则小丽出发后1小时30分钟追上小凡;假设S市与L市相距足够远,且三人均匀速行驶,则小丽出发后()小时追上小美。
A.2 B.3 C.4 D.5
【中公解析】选D。根据题干信息,会发现出现频次较高词汇为“追上”,所以本题可以分解出三次追及问题,反复利用追及距离公式进行求解即可。
1、小美追及小凡:追及距离=小凡先出发10分钟行进距离。
2、小丽追及小凡:追及距离=小凡较小丽提前出发30分钟所行进的距离。
3、小丽追及小美:追及距离=小美比小丽提前出发20分钟所行进距离。
进行求解即可算得t=300分钟,即5个小时,选D。
二、容斥问题:
(1)二者容斥相关公式:
例某班共有200人,现在调查大家对语数英三名授课老师的满意程度。100人对语文老师满意,80人对数学老师满意,70人对英语老师满意。有30人既对语文老师满意又对数学老师满意,有20人既对语文老师满意又对英语老师满意,有10人既对数学老师满意有对英语老师满意,还有5人对3位老师都满意,问对三位老师都不满意的有几人?
A.1 B.5 C.6 D.10
【中公解析】选B。大家在解答容斥问题的时候,要仔细阅读题目,根据题目的已知条件选择相对应的公式,进行解答即可。根据题意全集为200,其中
三、计算问题
1、等差数列:
2、等比数列:
例一次数学考试中老师给全班同学的成绩进行排名后发现,有11个同学的成绩是相同的并与其他同学的成绩刚好构成等差数列,且相同成绩的11个同学的分数刚刚好是等差数列的中项。排名第一的学生得99分,排名最后的学生得31分,已知全班总分为2015分,求全班有多少个学生?
A.25 B.27 C.29 D.31
【中公解析】选D。首先,我们要先将文字信息翻译成数学语言。根据题意,求n?根据题目中所给已知条件,我们首先先根据等差数列的性质将进行求解。根据选项,n为奇数,故。所以根据求和公式,进行代入,解得n=31。选D
以上就是中公教育专家为大家总结的关于行测备考过程中数量关系部分的常用公式,数学中的公式没有死记硬背的,应该在理解的基础上灵活的运用才好,所以大家仍然要继续努力,多做题目,从而提高做题速度及准确度。
公务员剩余定理问题
您好,中公教育为您服务。
数学运算之剩余定理专题
【例1】一个数被3除余1,被4除余2,被5除余4,这个数最小是几?
【解析】题中3、4、5三个数两两互质。
则〔4,5〕=20;〔3,5〕=15;〔3,4〕=12;〔3,4,5〕=60。
为了使20被3除余1,用20×2=40;
使15被4除余1,用15×3=45;
使12被5除余1,用12×3=36。
然后,40×1+45×2+36×4=274,
因为,274>60,所以,274-60×4=34,就是所求的数。
【例2】一个数被3除余2,被7除余4,被8除余5,这个数最小是几?在1000内符合这样条件的数有几个.?
【解析】题中3、7、8三个数两两互质。
则〔7,8〕=56;〔3,8〕=24;〔3,7〕=21;〔3,7,8〕=168。
为了使56被3除余1,用56×2=112;
使24被7除余1,用24×5=120。
使21被8除余1,用21×5=105;
然后,112×2+120×4+105×5=1229,
因为,1229>168,所以,1229-168×7=53,就是所求的数。
再用(1000-53)/168得5,所以在1000内符合条件的数有6个.
【例3】一个数除以5余4,除以8余3,除以11余2,求满足条件的最小的自然数。
【解析】题中5、8、11三个数两两互质。
则〔8,11〕=88;〔5,11〕=55;〔5,8〕=40;〔5,8,11〕=440。
为了使88被5除余1,用88×2=176;
使55被8除余1,用55×7=385;
使40被11除余1,用40×8=320。
然后,176×4+385×3+320×2=2499,
因为,2499>440,所以,2499-440×5=299,就是所求的数。
【例4】有一个年级的同学,每9人一排多5人,每7人一排多1人,每5人一排多2人,问这个年级至少有多少人?
【解析】题中9、7、5三个数两两互质。
则〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。
为了使35被9除余1,用35×8=280;
使45被7除余1,用45×5=225;
使63被5除余1,用63×2=126。
然后,280×5+225×1+126×2=1877,
因为,1877>315,所以,1877-315×5=302,就是所求的数。
关于“中国剩余定理”类型题目的另外解法
“中国剩余定理”解的题目其实就是“余数问题”,这种题目,也可以用倍数和余数的方法解决。
【例一】一个数被5除余2,被6除少2,被7除少3,这个数最小是多少?
解法:题目可以看成,被5除余2,被6除余4,被7除余4。看到那个“被6除余4,被7除余4”了么,有同余数的话,只要求出6和7的最小公倍数,再加上4,就是满足后面条件的数了,6X7+4=46。下面一步试下46能不能满足第一个条件“一个数被5除余2”。不行的话,只要再46加上6和7的最小公倍数42,一直加到能满足“一个数被5除余2”。这步的原因是,42是6和7的最小公倍数,再怎么加都会满足
“被6除余4,被7除余4”的条件。
46+42=88
46+42+42=130
46+42+42+42=172
【例二】一个班学生分组做游戏,如果每组三人就多两人,每组五人就多三人,每组七人就多四人,问这个班有多少学生?
解法:题目可以看成,除3余2,除5余3,除7余4。没有同余的情况,用的方法是“逐步约束法”,就是从“除7余4的数”中找出符合“除5余3的数”,就是再7上一直加4,直到所得的数除5余3。得出数为18,下面只要在18上一直加7和5得最小公倍数35,直到满足“除3余2”
4+7=11
11+7=18
18+35=53
【例1】在国庆50周年仪仗队的训练营地,某连队一百多个战士在练习不同队形的转换。如果他们排成五列人数相等的横队,只剩下连长在队伍前面喊口令。如果他们排成七列这样的横队,只有连长仍然可以在前面领队,如果他们排成八列,就可以有两个作为领队了。在全营排练时,营长要求他们排成三列横队。
以一哪项是最可以出现的情况?
A该连队官兵正好排成三列横队。
B除了连长外,正好排成三列横队。
C排成了整齐的三列横队,加有两人作为全营的领队。
D排成了整齐的三列横队,其中有一人是其他连队的
【解析】这个数符合除以5余1,除以7余1,除以8余2;
符合除以5余1,除以7余1的最小数为36,那么易知符合除以5余1,除以7余1,除以8余2为106,106÷3=35余1,所以选B。
【习题一】1到500这500个数字,最多可取出多少个数字,保证其取出的任意三个数字之和不是7的倍数。
【解析】
每7个数字1组,余数都是1,2,3,4,5,6,0,要使得三个数字之和不是7的倍数,那么其余数之和就不是7的倍数。
我们应该挑选 0,1,2,或者0,5,6
因为7/3=2也就是说最大的数字不能超过2,例如如果是1,2,3那么我们可以取3,3,1这样的余数,其和就是7
500/7=71余数是3,且剩下的3个数字余数是1,2,3
要得去得最多,那么我们取0,1,2比较合适因为最后剩下的是1,2,3所以这样就多取了2个
但是还需注意 0不能取超过2个如果超过2个是3个以上的话 3个0就可以构成7的倍数 0也能被7整除
所以答案是71个1,2和剩下的一组1,2外加2个0
71×2+2+2=146
如有疑问,欢迎向中公教育企业知道提问。
2018公务员考试行测数学题如何运用中国剩余定理
在近年来的国家公务员考试、各地方省考中都会出现一类题型,考查中国剩余定理,碰到此类问题,大部分同学可能采用代入法,可解决部分题目,华图教育专家认为,若能明确解题思路,就可达至秒杀速度,就必须明确题干特征和解题方法。
一千多年前的《孙子算经》中,有这样一道算术题:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?这就是我们所知中国剩余定理。
一般剩余问题的通用形式:一个数除以a余x,除以b余y,除以c余z,其中a、b、c两两互质,求满足该条件的最小数。
应用类型:
(1)余同加余:题干出现余数相同,即x=y=z,则满足的数是[a、b、c]n+x,[a、b、c]表示为a、b、c最小公倍数。
(2)差同减差:题干出现每组除数和余数差相同,即a-x=b-y=c-z,则满足的数是[a、b、c]n-(a-x)。
(3)和同加和:题干出现每组除数和余数和相同,即a-x=b-y=c-z,则满足的数是[a、b、c]n+(a-x)。
(4)逐步满足法:不存在上述情况下,从最大量开始尝试。
以下结合例题,讲解如何利用剩余定理解题。
【例1】:三位运动员跨台阶,台阶总数在 100-150级之间,第一位运动员每次跨 3级台阶,最后一步还剩 2级台阶。第二位运动员每次跨 4级台阶,最后一步还剩 3级台阶。第三位运动员每次跨 5级台阶,最后一步还剩 4级台阶。问:这些台阶总共有多少级?
A.119 B.121 C.129 D.131
【答案】 A。
【华图解析】由题干的差相同,则若多 1级台阶,则运动员每次跨 3、 4、 5级,均正好跨完所有台阶,即台阶数加 1是 3、 4、 5的倍数,所以台阶数可表示为 60n-1( n为正整数),结合选项可知答案为 A。当然此题也可代入。
【例2】:三位数的自然数P满足:除以 3余 2,除以 7余 3,除以 11余 4,则符合条件的自然数 P有多少个?
A. 5 B.4 C.6 D.7
【答案】 B。
【华图解析】此题不满足前面三种形式,故采用逐步满足法,先从最大的除数开始满足,满足除以 11余 4的最小数为 15,则11n+15都满足这一条件,当 n=0、 1、 2、 3时,均不满足除以 7余 3,当 n=4时, 11n+15=59,满足除以 7余 3, 11和 7的最小公倍数是 77,则 77n+59都满足这两个条件。当 n=0时, 59满足除以 3余 2, 77和 3的最小公倍数是 231,则 231n+59满足以上三个条件。又因为P为三位数,所以 n只能取 1、 2、 3、 4,即符合条件的自然数P有 4个,选择 B。
END,本文到此结束,如果可以帮助到大家,还望关注本站哦!