公务员考试数字推断(揭秘近九年公务员考试数字推理命题规律)


本篇文章给大家谈谈公务员考试数字推断,以及揭秘近九年公务员考试数字推理命题规律对应的知识点,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可以解决了您的问题,不要忘了收藏本站喔。

公务员考试数字推断(揭秘近九年公务员考试数字推理命题规律)

本文目录

公务员考试数字推断(揭秘近九年公务员考试数字推理命题规律)

  1. 公务员考试行测中的数字推理
  2. 揭秘近九年公务员考试数字推理命题规律
  3. 公务员考试里的数字逻辑答题技巧有哪些
  4. 公务员考试 数字排列题
  5. 做公务员考试中的数字推理有什么技巧

公务员考试行测中的数字推理

第一把金钥匙:看走向。拿到题目以后,用2秒钟迅速判断数列中各项的走向,例如:是越来越大,还是越来越小,还是有起有落。通过判断走向,找出该题的突破口。例如下面这道北京市面向2007应届生行测的真题:

公务员考试数字推断(揭秘近九年公务员考试数字推理命题规律)

14,6,2,0,()

A.-2 B.-1 C. 0 D. 1

我们看到,题目中的一直的四个数字是越来越小的,也就是走向是递减的,是一致的。对于这类走向一致的数列,新天地公务员数学老师通常的做法是从相邻两项的差或比例入手,很明显,这道题目不能从比例入手(因为14/6不是整数),那么,我们就作差,相邻两项的差为8,4,2成等比数列,因此,0减去所求项应等于1,故所求项等于-1,故选B。利用数列的走向,可以迅速判断出应该采取的方法,所以,走向就是旗帜,走向就是解题的命脉。

第二把金钥匙,利用特殊数字。一些数字推理题目中出现的数距离一些特殊的数字非常近,这里所指的特殊数字包括平方数,立方数,因此当出现某个整数的平方或者立方周围的数字时,我们可以从这些特殊数字入手,进而找出原数列的规律。例如下面这道2007年国家公务员考试行测的真题:

0,9,26,65,124,()

A. 165 B. 193 C. 217 D. 239

当我们看到26,65,124时,应该自然的本能的联想到27,64,125,因为27,64和125都是整数的方次,27是3的立方,64是4的立方也是8的平方也是2的6次方,125是5的立方,很明显,我们应该把64看作4的立方,也就是该数列每一项加1或减1以后,成为一组特殊的数字,他们是整数的立方,具体的说,就是:0+1为1的立方,9-1为2的立方,26+1为3的立方,65-1为4的立方,124+1为5的立方,因此,所求项减1应等于6的立方,故所求项为217,因此该题选C。从这道题目,新天地公务员老师提醒广大考生要在考场上做到“作对作快”,必须在备考时进行知识的积累和储备,具体到数字推理部分,就是要在考前将1到20的平方:1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400;1到10的立方:1,8,27,64,125,216,343,512,729,1000;2的1次方到10次方:2,4,8,16,32,64,128,256,512,1024;5的1次方到5次方:5,25,125,625,3125背熟,当数字推理中出现以上这些数字周围的数字时,要联想到这些特殊的数,从而找出规律,例如,看到217就要想到216。

第三把金钥匙:九九乘法口诀。九九乘法口诀是我国五千年文明的精华,是我们的国粹,作为选拔为国家公务人员的考试,当然要求应试者对我们的国粹有深刻的认识。当在做数字推理题目时,新天地公务员老师提醒大家要依次读已知的数的时候,应时刻想着乘法口诀,看看题目中的已给的数字是否在乘法口诀有关系,因为九九乘法口诀中所涉及的不仅是简单的乘法口诀,其中蕴涵着大量100以内整数的有关整除的信息,因此,很多时候,我们可以仅仅利用九九乘法口诀就找出已给数字的规律。

揭秘近九年公务员考试数字推理命题规律

作为一个重要的规律,幂数列的考查在国考的数字推理中占据重要的地位,我们分析2000年到2008年九年间国考真题可以得出这一结论。同时,由于幂数列的变形较多,它的考查形式就多种多样,了解了曾经的出题方式,对备考09年国考尤为重要。以下将九年间数字推理涉及到幂数列的真题一一列出,并给予详解,我们可以通过这些真题看出国考真题的命题规律所在。

一、九年国考幂数列真题汇总:

1. 1,8,9,4,(),1/6(2000年第25题)

A. 3B. 2C. 1D. 1/3

2. 0,9,26,65,124,()(2001年第45题)

A.186B.215C.216D.217

3. 1,4,27,(),3125(2003年A卷第3题)

A. 70 B. 184 C. 256 D. 351

4. 1,2,6,15,31,()(2003年B卷第4题)

A. 53 B. 56 C. 62 D. 87

5. 1,4,16,49,121,()(2005年一卷第31题)

A.256B.225C.196D.169

6. 2,3,10,15,26,()(2005年一卷第32题)

A.29B.32C.35D.37

7. 1,10,31,70,133,()(2005年一卷第33题)

A.136B.186C.226D.256

8. 1,2,3,7,46,()(2005年一卷第34题)

A.2109B.1289C.322D.147

9. 27,16,5,(),1/7(2005年二卷第26题)

A.16B.1C.0D.2

10. 1,0,-1,-2,()(2005年二卷第29题)

A.-8B.-9C.-4D.3

11. 1,32,81,64,25,(),1(2006年一卷第32题)

A.5 B.6 C.10 D.12

12.-2,-8,0,64,()(2006年一卷第33题)

A.-64 B.128 C.156 D.250

13.2,3,13,175,()(2006年一卷第34题)

A.30625 B.30651 C.30759 D.30952

14——16同2006年(一卷)

17. 1,3,4,1,9,()(2007年第42题)

A.5 B.11 C.14 D.64

18. 0,9,26,65,124,()(2007年第43题)

A.165 B.193 C.217 D.239

19.0,2,10,30,()(2007年第45题)

A.68 B.74 C.60 D.70

20. 67,54,46,35,29,()(2008年第44题)

A. 13 B. 15 C. 18 D. 20

21. 14,20,54,76,()(2008年第45题)

A. 104 B. 116 C. 126 D. 144

二、九年国考幂数列命题规律总结:

1.可以看出:从2000年到2008年,除了2002年之外,每一年的试题都考到了幂数列这一规律;并且幂数列在整个数字推理中所占比例越来越大。(见表一)

(表一)

年份 2000年 200年 2003年 2005年 2006年 2007年 2008年

A卷 B卷一卷二卷一卷二卷

占当年出题总量的比例 1/5 1/5 1/5 1/5 4/10 2/10 3/5 3/5 3/5 2/5

占数字出题总量的比例 21/75(9年国考总的数字推理共计75道,其中幂数列出题21道)

2.对幂数列的考查主要有以下几种出题类型:

(表二)

出题类型涉及考题占幂数列总出题量比例

一、原数列各项可以直接化成某个数的幂 00年25题、03年A卷3题、05年一卷31题、 05年二卷26题、06年一卷32题、 06年二卷32题 6/21

二、原数列由幂数列加减一个常数构成 01年45题、05年一卷32与33题、 07年43与45题、08年45题 6/21

三、原数列各项做差、做和或拆项之后构成幂数列 03年B卷4题、06年一卷33题、 06年二卷33题、08年44题 4/21

四、原数列后项由前项幂变形而产生 05年一卷34题、05年二卷29题、 06年一卷34题、06年二卷34题、 07年42题 5/21

3.一定要注意“新瓶装老酒”的出题方式

纵观历年国考出题,我们可以发现一个有趣的现象,就是“新瓶装老酒”,“酒”还是原来的出题规律,只是把它换个数字,重现展现在广大考生面前。虽然是老酒,因为有了新的瓶子,也着实让广大考生大为头疼。比如:2007年国考的43题就是2001年的45题,是一道原题重新考;另外:2005年的26题与2000年的25题考的是同一个类型的题目,都是幂指数不相等的幂数列。

针对这种现象,京佳公务员崔熙琳老师提醒考生,一定要把曾经考过的老题做透、做到不仅知其然还要知其所以然,达到不变应万变的境界。

三、九年国考幂数列真题详解:

1. C。通过分析得知:1是1的4次方,8是2的3次方,9是3的2次方,4是4的1次方,由此推知,空缺项应为5的0次方即1,且6的-1次方为1/6,符合推理。

2. D。此题是立方数列的变式,其中:0等于1的3次方减1,9等于2的3次方加1,26等于3的3次方减1,65等于4的3次方加1,124等于5的3次方减1,由此可以推知下一项应:6的3次方加1,即217。

3. C。数列各项依次是:1的1次方,2的2次方,3的3次方,(4的4次方),5的5次方。

4. B。该数列后一项减去前一项,可得一新数列:1,4,9,16,(25);新数列是一个平方数列,新数列各项依次是:1的2次方,2的2次方,3的2次方,4的2次方,5的2次方;还原之后()里就是:25+31=56。

5. A。这是一道幂数列。数列各项依次可写为:1的2次方,2的2次方,4的2次方,7的2次方,11的2次方;其中新数列1,2,4,7,11是一个二级等差数列,可以推知()里应为16的2次方,即256。

6. C。这是一道平方数列的变式。数列各项依次是:1的2次方加1,2的2次方减1,3的2次方加1,4的2次方减1,5的2次方加1,因此()里应为:6的2次方减1,即35。

7. C。这是一道立方数列的变式。数列各项依次是:1的3次方加0,2的3次方加2,3的3次方加4,4的3次方加6,5的3次方加8,因此()里应为:6的3次方加10,即226。

8. A。这是一道幂数列题目。该题数列从第二项开始,每项自身的平方减去前一项的差等于,下一项,即3=2的平方-1,7=3的平方-2,46=7的平方-3,因此()里应为:46的平方-7,即2109。

9. B。这是一道幂数列题目。原数列各项依次可化为:3的3次方,4的2次方,5的1次方,(6的0次方),7的-1次方,因此()里应为1。

10. B。本题规律为:前一项的立方减1等于后一项,所以()里应为:-2的3次方减1,即-9。

11. B。这是一道幂数列题目。原数列各项依次可化为:1的6次方,2的5次方,3的4次方,4的3次方,5的2次方,(6的1次方),7的0次方,因此()里应为6。

12. D。数列各项依次可化成:-2×(1的3次方),-1×(2的3次方),0×(3的3次方),1×(4的3次方),因此()里应为:2×(5的3次方),即250。

13. B。本题规律为:[3的平方+(2×2)]=13,[13的平方+(2×3)]=175,因此()里应为:175的平方+(2×13),即30651。

14——16(同11——13)

17. D。本题规律为:(第二项-第一项)的平方=第三项,所以()里应为:(1-9)的平方,即64。

18. C。此题是立方数列的变式,其中:0等于1的3次方减1,9等于2的3次方加1,26等于3的3次方减1,65等于4的3次方加1,124等于5的3次方减1,由此可以推知下一项应:6的3次方加1,即217。

19. A。数列各项依次可化成:0的3次方加0,1的3次方加1,2的3次方加2,3的3次方加3,所以()里应为:4的3次方加4,即68。

20. D。这是一道幂数列变形题。题干中数列的每两项之和是:121,100,81,64,49,分别是:11、10、9、8、7的平方。所以()里就是7的平方-29,即20。

21. C。这是一道幂数列的变形题。题干中数列各项分别是:3的平方加5,5的平方减5,7的平方加5,9的平方减5,所以()里就是11的平方加5,即126。

四、09年国考数字推理命题预测:

由表二可以得出以下结论:

1.幂数列第一种出题类型是幂数列考查的重点,但是在06年之后已经逐渐淡出试卷;

2.幂数列第二种出题类型是目前考试的重点,并且将继续延续下去;

3.幂数列第三种出题类型是比较传统的出题类型,目前考试虽然题量少,但仍然会考到;

4.幂数列第四种类型是目前及今后考核的重点,也是广大考生备考复习的重点所在。(作者:崔熙琳)

公务员考试里的数字逻辑答题技巧有哪些

您好,中政行测和中政申论备考平台为您解答!

一、机械法。

就是主要依靠机械、刻板的思维方式来推导。有时与常识相悖,依然按照“死教条”来推理。注意:做逻辑题,选择答案不是看这个选项是否符合客观实际,而是看这个选项是否能由题干推出,在这个推出过程中是否符合“机械原则”。

二、画图法。

即:边读题,边用箭头、符号、图表来简化推理关系,明确逻辑主线,从而迅速找到解题突破口。

这是击破公考行测难题之逻辑推理篇的重要武器。

三、代入排除法。

方法是将题干中的已知条件,依次代入4选中,一一排除4选中的三项,求出一项。代入排除法也是逻辑推理中的常用方法。

四、矛盾法

即首先逮住直接矛盾的两项,则其中必有一真,而且是一真三假,另两项也就肯定是假的了。题目迎刃而解了。

此外还有:

五、勾杠法

六、抽象符号法

七、论据论点法。

如仍有疑问,欢迎向"中政行测在线备考平台"和"中政申论在线备考平台"提问,我们会及时解答。

公务员考试 数字排列题

您好:答案如下

0,1,1,2,4,7,13,(24)

3,10,29,(66),127

2,2,3,5,(14),69

解析如下:

(问题1)0,1,1,2,4,7,13,(24)解析:

1+1+2=4

1+2+4=7

2+4+7=13

4+7+13=24

从第四个数字开始,后面每一个数字,都是前面三个数字之和。

再下面一个数字应该是7+13+24=44

(问题2)3,10,29,(66),127解析:

3=1的3次方+2

10=2的3次方+2;

29=3的3次方+2;

66=4的3次方+2;

127=5的3次方+2;

所以应该是66

(问题3)2,2,3,5,(14),69解析:

5=2*3-1

14=3*5-1

69=14*5-1

任意一个数是前两个数之积减1

做公务员考试中的数字推理有什么技巧

您好,中政行测和中政申论备考平台为您解答!

题型分析所谓数字推理,就是在每道试题中呈现一组按某种规律排列的数列,但这一数列中有意地空缺了一项,要求考生对这一数列进行观察和分析,找出数列的排列规律,从而根据规律推导出空缺项应填的数字,然后在供选择的答案中找出应选的一项,在答题纸上将相应题号下的选项涂黑。

在作答这种数字推理的试题时,反应要快,既要利用直觉,还要掌握恰当的方法。首先找出两相邻数字(特别是第一、第二个)之间的关系,迅速将这种关系类推到下两个相邻数字中去,若还存在这种关系,就说明找到了规律,可以直接地推导出答案;假如被否定,应该马上改变思考方向和角度,提出另一种数量关系假设。如此反复,直到找到规律为止。有时也可以从后面往前面推,或“中间开发”往两边推,都是较为有效的。答这类试题的关键是找出数字排列时所依据的某种规律,通过相邻两数字间关系的两两比较就会很快找到共同特征,即规律。规律被找出来了,答案自然就出来了。在进行此项测验时,必然会涉及到许多计算,这时,要尽量多用心算,少用笔算或不用笔算

如仍有疑问,欢迎向"中政行测在线备考平台"和"中政申论在线备考平台"提问,我们会及时解答。

好了,关于公务员考试数字推断和揭秘近九年公务员考试数字推理命题规律的问题到这里结束啦,希望可以解决您的问题哈!

网上报名
  • 姓名:
  • 专业:
  • 层次: 分数:
  • 电话:
  • QQ/微信:
  • 地址:

文中图片素材来源网络,如有侵权请联系644062549@qq.com删除

提交报名同学/家长:允许择校老师帮您择校调剂,同意《隐私保障》条例,并允许推荐给更多服务商为您提供服务!

转载注明出处:http://www.52souxue.com