大家好,感谢邀请,今天来为大家分享一下公务员考试30只牛的问题,以及和公务员考试题里的牛吃草问题求细解!的一些困惑,大家要是还不太明白的话,也没有关系,因为接下来将为大家分享,希望可以帮助到大家,解决大家的问题,下面就开始吧!
本文目录
公务员考试羊是牛的一半
牛和羊共100只的正确答案?这种题目,答案总类太多,如果没有其它的条件,答案有100种。我随便举例几种,第一种,牛50只,羊50只。
第二种,牛51只,羊49只。
第三种,牛52只,羊48只。
第四种,牛53只,羊47只。
第五种,牛54只,羊46只。
第六种,牛55只,羊45只,由此类推,总共有100种方法。
公务员行测备考中,如何巧妙解答牛吃草问题
一、特征判断
1、有初始量
2、有均匀增长量
3、有排比句
例1.一个牧场长满青草,青草每天均匀生长。若放养27头牛可吃6天,若放养23头牛可吃9天,那么放养21头牛可吃多少天。
例2.由于天气逐渐变冷,牧场上的草以均匀的速度减少。牧场上的草可供20头牛吃5天,或可供15头牛吃6天,照此计算,可供多少头牛吃10天。
二、模型求解宝典
模型一:追及型牛吃草问题
例3.一个牧场长满青草,青草每天均匀生长。若放养27头牛可吃6天,若放养23头牛可吃9天,那么放养21头牛可吃多少天。
【解析】牛在吃草,草每天均匀生长,所以是牛吃草问题中的追击问题,原有草量=(牛每天吃掉的草-每天生长的草)×天数,设每头牛每天吃草量为“1”,每天生长的草量为X,可供21头牛吃T天,所以(27-X)×6=(23-X)×9=(21-X)×T,解得T=12.
模型二:相遇型牛吃草问题
例4.由于天气逐渐变冷,牧场上的草以均匀的速度减少。牧场上的草可供20头牛吃5天,或可供15头牛吃6天,照此计算,可供多少头牛吃10天。
【解析】牛在吃草,草每天均匀减少,所以是牛吃草问题中的相遇问题,原有草量=(牛每天吃掉的草+每天生长的草)×天数,设每头牛每天吃草量为“1”,每天生长的草量为X,可供N头牛吃21天,所以(20+X)×5=(15+X)×6=(N+X)×10,解得N=5.
模型三:极值型牛吃草问题
例5.有一个牧场长满青草,青草每天均匀生长。如果放养24头牛那么6天可以把草吃完,如果放养21头牛那么8天可以把草吃完,要让草永远吃不完,最多放养多少头牛。
【解析】牛在吃草,草每天均匀生长,所以是牛吃草问题中的追及问题,原有草量=(牛每天吃掉的草-每天生长的草)×天数,设每头牛每天吃草量为“1”,每天生长的草量为X,所以(24-X)×6=(21-X)×8,解得X=12,即每天生长的草量为12,要保证永远吃不完,那就要让每天吃掉的草量等于每天生长的草量,所以最多放养12头牛。
模型四:多草场型牛吃草问题
例6.20头牛,吃30公亩牧场的草15天可吃尽,15头牛吃同样牧场25公亩的草,30天可吃尽。请问几头牛吃同样牧场50公亩的草,12天可吃尽?
【解析】取25、30和50的公倍数150,所以原题等价于“150亩的牧场可供100头牛吃15天,可供90头牛吃30天,那么可供多少头牛吃12天”,设每头牛每天吃草量为“1”,草长的速度是X,150亩的草可供N头牛吃12天,那么有(100-X)×15=(90-X)×30=(N-X)×12,解得N=105,105÷3=35,所以35头牛吃同样牧场50公亩的草,12天可吃尽。
以上内容就是在行测问题中牛吃草类型的题目常考的四个子类型的题目,大家可以根据以上四个类型的题目总结一下解题的思路,然后灵活套用公式进行计算。
公务员考试题里的牛吃草问题求细解!
公务员考试行测数量关系题,牛吃草问题的解法:
追及型牛吃草问题:一个量使原有草量变大,一个量使原有草量变小。
公式:原有草量=(牛每天吃掉的草-每天生长的草)*天数。
相遇型牛吃草问题:两个量都使原有草量变小。
公式:原有草量=(牛每天吃掉的草+其他原因每天减少的草量)*天数。
极值型牛吃草问题:在同一草场放不同的数量的牛有不同种吃法,求为了保持草永远都吃不完,那么最多能放几头牛。
公式:利用原有草量=(牛每天吃掉的草-每天生长的草)×天数,求出草的生长速度,最多的牛的头数=x。
多个草场牛吃草问题:在不同一草场放不同的牛数有不同种吃法,其中每头牛每天吃的草量和草每天生长的量都不变。
公式:通过最小公倍数寻找多个草场的面积的“最小公倍数”,再将所有面积都转化为“最小公倍数”同时对牛的头数进行相应的变化,转化成原有草量相同的标准的牛吃草问题。
标准的牛吃草问题:在同一草场放不同的数量的牛有不同种吃法,求牛的头数或天数。
公式:原有草量=(牛每天吃掉的草-每天生长的草)×天数。
一般设每头牛每天吃的草量为单位1,草的生长速度为X,牛的头数为N,天数为T。即,原有草量=(N-X)*t.
公务员考试趣味题之牛为什么永远吃不完草
一个核心公式搞定牛吃草问题
我们行测考试当中的牛吃草问题,是套路特别深的题目,遇到牛吃草,将题目条件代入我们的核心公式,就可以得到结果。
核心公式为:草原原有草量=(牛数-每天长草量)×天数,字母表示为Y=(N-X)×T。
那么怎样判断一个问题是不是牛吃草呢,牛吃草问题的典型特征就是,有一类事物在被消耗的同时其自身还在生长。符合这个定义的就可判定为牛吃草问题。当然,牛吃草问题模型还可以套用到超市收银台结账、漏船排水、窗口售票等各种环境。
接下来我们就通过几道例题来具体感受一下牛吃草核心公式的应用。
【例1】牧场上有一片青草,牛每天吃草,草每天以均匀的速度生长。这片青草供给10头牛可以吃20天,供给15头牛吃,可以吃10天。供给25头牛吃,可以吃多少天?()
A.6 B.5 C.4 D.3
【例2】有一个水池,池底不断有泉水涌出,且每小时涌出的水量相同。现要把水池里的水抽干,若用5台抽水机40小时可以抽完,若用10台抽水机15小时可以抽完。现在用14台抽水机,多少小时可以把水抽完?()
A. 10小时 B.9小时 C.8小时 D.7小时
【例3】某剧场8:30开始检票,但很早就有人排队等候,从第一名观众来到时起,每分钟来的观众一样多,如果开三个检票口,则8:39就不再有人排队,如果开五个检票口,则8:35就没有人排队,那么第一名观众到达的时间是()。
A. 7:30 B. 7:45 C.8:00 D. 8:15
首先第一题一看,牛在吃草的同时,草还在生长,符合我们的牛吃草模型,那我们就来代入公式,两种吃法,10头牛吃20天跟15头牛吃10天,可以得到两个等式,y=(10-x)×20,y=(15-x)×10,解得y=100,x=5,因此25头牛吃几天代入等事就可以,100=(25-5)×T,解得T=5(天)。接下来第二题,抽水机在抽水的同时,池底孩子涌水,符合我们的牛吃草模型,5台抽水机就相当于5头牛,接下来我们代入核心公式,y=(5-x)×40,y=(10-x)×15,解得y=120,x=2,那么用14台抽水机时120=(14-2)×T,解得T=10(小时)。最后一题,有人检票入场之后,不断的还有人前来检票,这个符合我们的牛吃草模型,有多少个检票口就相当于有多少头牛,分别用核心公式代入两种情况,y=(3-x)×9,y=(5-x)×5,解得y=22.5,x=0.5,所以第一名到达的时间22.5÷0.5=45(分钟)前,即7:45。因此,以后大家遇到牛吃草问题一定不要慌,直接代入我们的核心公式,就可以得出想要的结果。
朝阳华小图奉上。
公务员考试中,行测里每个题的分值是多少
公务员考试中行测总分是100分,但是每题的分值是没有公布的,行测题目总数一般为135题或者120题。
公务员考试行测题型基本一致,分为常识判断、言语理解、数量关系、判断推理和资料分析五大类题目。
行测常识判断分值分布:考查政治、经济、法律、历史、地理、自然、科技等常识,总共20道题,每题分值在0.5分左右。
行测言语理解分值分布:选词填空20道题,片段阅读20道题,总共40道题。每题分数在0.6至0.8分左右。
行测判断推理分值分布:定义判断10道题,图形推理5道题,类比推理10道题,逻辑判断10道题,总共35道题。每题分数在0.6至0.8分左右。
行测数学运算分值分布:总共10道题。每题分值在1分左右。
行测资料分析分值分布:分为三份资料,每份资料有5道题,总共15道题。每题分值在1分左右。
扩展资料:
行测复习技巧
1、评测定位,把握方向
在决定开始复习工作之前,可以先做一套完整的行测试题,找一套之前的国考真题,感受一下在没有任何基础的情况下,每一种题型的难易程度。在核对好答案之后,可以把五个专项按照自己擅长的程度进行一个排序,在接下来的复习工作中,可以按照这样的顺序从易到难的进行复习。
2、专项练习,循序渐进
复习时循序渐进,从简单的做起,由易到难,这样做对于长期的复习工作来说,是一个良好的开端,也可以树立大家的信心。
3、适当放弃,方能成功
考试的过程中,时间段,任务重,我们不可能把所有的题目都做完,做好。所以在复习的时候要意识到这一点,对于自己擅长的部分一定要精益求精,而对于自己不擅长的部分则在复习时先尽量把握基本的,简单的题目,然后在进行拔高训练。尤其在后期
参考资料来源:百度百科-行测
END,本文到此结束,如果可以帮助到大家,还望关注本站哦!