数学的课程在学生任何阶段的学习中都是占据着非常重要的部分,所以很多家长也对于孩子数学方面的成绩特别关注,现在有很多学生即将要步入到高一的学习阶段了,所以很想提前了解一些关于高一数学必修二知识点的相关内容,下面掌门学堂小编和大家分享一下。
高一数学必修2知识点
高一数学必修二知识点总结:定理总结
公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1:经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4:平行于同一条直线的两条直线互相平行。
等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
高一数学必修二知识点总结:空间两直线的位置关系
空间两条直线只有三种位置关系:平行、相交、异面
按是否共面可分为两类。
共面:平行、相交。
异面。
异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp.空间向量法。
两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法。
若从有无公共点的角度看可分为两类。
有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面。
直线和平面的位置关系。
直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行。
直线在平面内——有无数个公共点。
直线和平面相交——有且只有一个公共点。
直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
空间向量法(找平面的法向量)
规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角。
由此得直线和平面所成角的取值范围为[0°,90°]。
最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角。
三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。
直线和平面垂直
直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。
以上是掌门学堂小编和大家分享关于高一数学必修二知识点的相关内容,可见步入高一的学习阶段,数学方面知识量的增加是非常多的,所以想要保持数学方面的良好成绩,在入学前一定要做好提前预习。